Exceptional service in the national interest

Developing Battery Safety and Abuse Testing for Stationary Battery Applications

Joshua Lamb, Leigh Anna M. Steele, John Hewson and Summer Ferreira **Energy Storage Peer Review**

Approach and Capabilities

Cell and Module Testing
Battery Abuse Testing Laboratory (BATLab)

Battery Pack/System Testing Thermal Test Complex (TTC) and Burnsite

Battery Calorimetry

Lithium-ion Safety Issues

Testing program aimed at understanding and improving abuse tolerance of energy storage systems

Discharge of cells under abuse conditions

Can the energy be removed prior to cell failure?

- 3 AH LiCoO₂ cells
- Heating applied through direct contact with hot surface
- Discharge attempted on cell as it approaches abusive temperatures
- Impact of changes to cell resistivity?
- Impact of separator shutdown?

Discharge under abusive conditions Sandia National Laboratories

- 1C Discharge of 3 AH Li-Ion cell attempted at 20 C intervals with the first discharge occurring at 80 °C
- Cell discharges well at 90-100 °C and discharges with some polarization at 120 °C
- Cell is heavily polarized and does not discharge above 130 °C

Discharge at 160 C

- Cell heated to 160 °C and a 1C discharge attempted
- Discharge accelerates runaway process as cell goes into runaway almost immediately after initiating discharge

Discharge at 150C

- Cell heated to 150 °C and a 1C discharge attempted
- Discharge accelerates runaway process as cell goes into runaway almost immediately after initiating discharge
- Cell was relatively stable when compared to cell at 160 °C with little to no indication of self heating

Battery Failure Propagation

- Simply, the propensity of the energetic failure of a single cell to cause widespread thermal runaway within a battery
- Most large battery systems are designed to withstand the loss of several cells from a performance standpoint
- A point failure becomes more serious if it can send nearby cells into thermal runaway
- Recent events (Fisker, Boeing) have had battery runaway events that engulfed the entire pack
- Provide previously collected data as well as new data to developers of battery propagation models

- Diagram showing cell and thermocouple locations
- Series and parallel constructions used, series pack wired in order from Cell 1 to cell 10
- Simple compared to a large battery system to understand general driving forces

Detailed procedure described in SAND2014-17053 "Propagation Testing Multi Cell Batteries" Available from Sandia

Battery Failure Propagation

- Pack constructed from 2.6 Ah LFP cells, failure initiated with nail penetration to central cell
- No cell to cell failure observed
- Heating rates observed similar to that for single cell

What's the Impact?

How a cell with low peak heating rates can have a catastrophic failure

LFP 26650 cells - 1S10P

- Pack constructed from 2.6 Ah LFP cells, failure initiated with nail penetration to central cell
- Complete propagation failure in LFP-26650 1S10P pack
- Significant increase in the severity of failure from a single cell Single cell peak heating rates of ~105 W

10

Internal shorts in parallel

Two cell parallel module – single cell short created with nail penetration Short circuit current measured across constantan bridge wire of known resistance

- A single cell delivered a peak of ~98A and 13 kJ of energy into the shorted cell in ~2 minutes
- This shows how the presence of stored energy within a system increases the potential for failure
- Could a runaway still occur with large numbers of low SOC cells or cells in well insulated conditions?

Summary

- Li-Ion batteries are becoming more attractive to stationary systems due to the excellent performance of many Li-Ion chemistries, however several safety issues remain including:
 - How can a thermal runaway be arrested?
 - What is the impact of a single cell failure within a large system?
 - What impact will gasses produced during battery failure have on the surrounding environment?
- Discharging overheated cells was demonstrated to be achievable at moderate temperatures, however cell resistivity dramatically increases as cells approach thermal runaway.
- As the temperature approaches the onset of thermal runaway, application of a discharge was shown to accelerate the runaway process.
- Thermal propagation testing shows the potential for discharge currents to accelerate thermal runaway failure
- Discharge current testing shows a single cell contributing almost 100 A of current

Contact Information

- Š Joshua Lamb
 - š jlamb@sandia.gov

Acknowledgements

- **Š** Christopher Orendorff
- Š Scott Spangler
- **Š** Chris Grosso
- **Š** Jill Langendorf

- Š DOE/OE
 - **Š** Imre Gyuk
- Š BATLab developed under funding from DOE/VTO
 - **Š** Dave Howell
 - **Š** Brian Cunningham